Data Science Using Python

  • Home
  • COE
  • Data Science Using Python
PROGRAM NAME

Data Science Using Python

DURATION OF PROGRAM

40 HOURS

  • Introduction to Python
  • Introduction to data science
  • Introduction to AI-ML

  • Header
  • Panda read csv
  • datatype and statistics
  • Panda column operations
  • Panda operations
  • Merge and concat
  • Tables
  • Graphs

  • One Dimension
  • Two Dimension
  • Two Dimension stacking

  • Data Dictionary
  • Single numeric descriptive analysis
  • Double numeric descriptive analysis
  • Categorical and all Numeric Descriptive Analysis

  • Introduction and Preprocessing
  • Feature Selection Regularisation
  • Residual Analysis
  • Data Read
  • Normality test and BoxCox transformation
  • Linear Regression structure
  • Linear Regression for Numeric features
  • HotEncoding and Scaling
  • Linear Regression with HotEncoding and Scaling Data
  • Generic Treeflow in Prediction
  • CatBoost
  • CatBoost Hyperparameter Tuning

  • Classification Introduction
  • Classification: Code and data load
  • Classification: Random Forest
  • Classification: Random Forest code
  • Classification: CatBoost code
  • Classification: One class SVM code
  • Classification:Logistic Regression
  • Classification: Logistic Regression code

  • Clustering: Introduction
  • Clustering: KMeans
  • Clustering: Agglomerative
  • Clustering: KNN
  • Clustering:KNN using Iris

  • Text Analytics: Introduction
  • Text Analytics: NLTK Installation
  • Text Analytics: Tokenization TextBlob
  • Named-entity recognition (NER)-Stemming-Lemmatization
  • Word Cloud